Monad Factory: Type-Indexed Monads

نویسندگان

  • Mark Snyder
  • Perry Alexander
چکیده

Monads provide a greatly useful capability to pure languages in simulating side-effects, but implementations such as the Monad Transformer Library [1] in Haskell prohibit reuse of those side-effects such as threading through two different states without some explicit workaround. Monad Factory provides a straightforward solution for opening the non-proper morphisms by indexing monads at both the type-level and term-level, allowing ‘copies’ of the monads to be created and simultaneously used within even the same monadic transformer stack. This expands monads’ applicability and mitigates the amount of boilerplate code we need for monads to work together, and yet we use them nearly identically to non-indexed monads.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The semantic marriage of monads and effects

Wadler and Thiemann unified type-and-effect systems with monadic semantics via a syntactic correspondence and soundness results with respect to an operational semantics. They conjecture that a general, “coherent” denotational semantics can be given to unify effect systems with a monadic-style semantics. We provide such a semantics based on the novel structure of an indexed monad, which we intro...

متن کامل

ar X iv : 1 40 1 . 53 91 v 1 [ cs . P L ] 2 1 Ja n 20 14 The semantic marriage of monads and effects Extended abstract Dominic Orchard

Wadler and Thiemann unified type-and-effect systems with monadic semantics via a syntactic correspondence and soundness results with respect to an operational semantics. They conjecture that a general, “coherent” denotational semantics can be given to unify effect systems with a monadic-style semantics. We provide such a semantics based on the novel structure of an indexed monad, which we intro...

متن کامل

Descent for Monads

Motivated by a desire to gain a better understanding of the “dimensionby-dimension” decompositions of certain prominent monads in higher category theory, we investigate descent theory for endofunctors and monads. After setting up a basic framework of indexed monoidal categories, we describe a suitable subcategory of Cat over which we can view the assignment C 7→ Mnd(C) as an indexed category; o...

متن کامل

Applications of the Kleisli and Eilenberg-Moore 2-adjunctions

In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...

متن کامل

Monads Need Not Be Endofunctors

We introduce a generalisation of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed λ-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010